All Issue

2022 Vol.14, Issue 4
31 December 2022. pp. 6-15
Abstract
References
1
S. Saini, S. Nikhil, K. R. Konda, H. S. Bharadwaj, and N. Ganeshan, 2017, "An efficient vision-based traffic light detection and state recognition for autonomous vehicles", in 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 606~611. 10.1109/IVS.2017.7995785
2
Z. Ouyang, J. Niu, Y. Liu, and M. Guizani, 2019, "Deep CNN-based real-time traffic light detector for self-driving vehicles", IEEE transactions on Mobile Computing, Vol. 19, No. 2, pp. 300~313. 10.1109/TMC.2019.2892451
3
K. Yabuuchi, M. Hirano, T. Senoo, N. Kishi, and M. Ishikawa, 2020, "Real-time traffic light detection with frequency patterns using a high-speed camera", Sensors, Vol. 20, No. 14, p. 4035. 10.3390/s2014403532698522PMC7411834
4
Kulkarni, Ruturaj, Shruti Dhavalikar, and Sonal Bangar, "Traffic light detection and recognition for self driving cars using deep learning", 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), IEEE, 2018. 10.1109/ICCUBEA.2018.8697819
5
de Mello, Jean Pablo Vieira, et al., "Deep traffic light detection by overlaying synthetic context on arbitrary natural images", Computers & Graphics 94(2021): 76~86. 10.1016/j.cag.2020.09.012
6
J. Redmon and A. Farhadi, 2018, "Yolov3: An incremental improvement", arXiv preprint arXiv:1804.02767.
7
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, 2020, "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934.
8
A. S. Glenn Jocher, Jirka Borovec, NanoCode012, Ayush Chaurasia, TaoXie, Liu Changyu, Abhiram V, Laughing, tkianai, yxNONG, Adam Hogan, lorenzomammana, AlexWang1900, Jan Hajek, Laurentiu Diaconu, Marc, Yonghye Kwon, oleg, wanghaoyang0106, Yann Defretin, Aditya Lohia, ml5ah, Ben Milanko, Benjamin Fineran, Daniel Khromov, Ding Yiwei, Doug, Durgesh, and Francisco Ingham, 2021, "ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations", ed. Zenodo.
9
S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton, 2015, "Optimizing deep learning hyper-parameters through an evolutionary algorithm", in Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, pp. 1~5. 10.1145/2834892.2834896
10
H. Liu, T. Taniguchi, Y. Tanaka, K. Takenaka, and T. Bando, 2017, "Visualization of driving behavior based on hidden feature extraction by using deep learning", IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp. 2477~2489. 10.1109/TITS.2017.2649541
11
J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, 2015, "Understanding neural networks through deep visualization", arXiv preprint arXiv:1506.06579.
12
J. Han, J. Pei, and M. Kamber, 2011, Data mining: concepts and techniques. Elsevier.
13
Tzutalin. LabelImg [Online] Available: https://github.com/tzutalin/labelImg
Information
  • Publisher :Korean Auto-vehicle Safety Association
  • Publisher(Ko) :한국자동차안전학회
  • Journal Title :Journal of Auto-vehicle Safety Association
  • Journal Title(Ko) :자동차안전학회지
  • Volume : 14
  • No :4
  • Pages :6-15
  • Received Date : 2021-09-10
  • Revised Date : 2022-11-16
  • Accepted Date : 2022-11-16