All Issue

2024 Vol.16, Issue 3 Preview Page
30 September 2024. pp. 18-24
Abstract
References
1

Xu, H., Gao, Y., Yu, F., and Darrell, T., 2017, End-to-end learning of driving models from large-scale video datasets. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2174~2182).

10.1109/CVPR.2017.376
2

Alkinani, M. H., Khan, W. Z., and Arshad, Q., 2020, "Detecting human driver inattentive and aggressive driving behavior using deep learning: Recent advances, requirements and open challenges," Ieee Access, 8, 105008~105030.

10.1109/ACCESS.2020.2999829
3

Moujahid, A., Tantaoui, M. E., Hina, M. D., Soukane, A., Ortalda, A., ElKhadimi, A., and Ramdane-Cherif, A., 2018, "Machine learning techniques in ADAS: A review," International Conference on Advances in Computing and Communication Engineering (ICACCE), pp. 235~242, IEEE.

10.1109/ICACCE.2018.8441758
4

Wan, F., Guo, G., Zhang, C., Guo, Q., and Liu, J. 2019, "Outlier detection for monitoring data using stacked autoencoder," IEEE Access, 7, 173827~173837.

10.1109/ACCESS.2019.2956494
5

Bao, W., Yue, J., and Rao, Y., A deep learning framework for financial time series using stacked autoencoders and long-short term memory, PLoS ONE 2017, 12, e0180944.

10.1371/journal.pone.0180944
6

Gensler, A., Henze, J., Sick, B., and Raabe, N., Deep Learning for solar power forecasting-An approach using AutoEncoder and LSTM Neural Networks, In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9-12 October 2016, pp. 2858~2865.

10.1109/SMC.2016.7844673
7

Wei, Wangyang, Honghai Wu, and Huadong Ma, 2019, "An autoencoder and LSTM-based traffic flow prediction method," Sensors, 19(13), 2946.

10.3390/s19132946
8

Schmidhuber, J., Deep Learning in neural networks: An overview, Neural Netw. 2015, 61, 85~117. doi:10.1016/j.neunet.2014.09.003.

10.1016/j.neunet.2014.09.003
9

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, 2017, "Attention is all you need," in Advances in neural information processing systems, pp. 5998~6008.

10

Kim, H. Y., Choi, S. W., and Huh, K. S., 2020, "Probabilistic vehicle trajectory prediction considering inter-vehicle interaction based on multi-head attention architecture," Transactions of the Korean Society of Automotive Engineers, 28(9), 645~652.

10.7467/KSAE.2020.28.9.645
Information
  • Publisher :Korean Auto-vehicle Safety Association
  • Publisher(Ko) :한국자동차안전학회
  • Journal Title :Journal of Auto-vehicle Safety Association
  • Journal Title(Ko) :자동차안전학회지
  • Volume : 16
  • No :3
  • Pages :18-24
  • Received Date : 2024-01-11
  • Revised Date : 2024-04-15
  • Accepted Date : 2024-08-31